Stochastic Grammatical Inference with Multinomial Tests
نویسندگان
چکیده
We present a new statistical framework for stochastic grammatical inference algorithms based on a state merging strategy. We propose to use multinomial statistical tests to decide which states should be merged. This approach has three main advantages. First, since it is not based on asymptotic results, small sample case can be specifically dealt with. Second, all the probabilities associated to a state are included in a single test so that statistical evidence is cumulated. Third, a statistical score is associated to each possible merging operation and can be used for best-first strategy. Improvement over classical stochastic grammatical inference algorithm is shown on artificial data.
منابع مشابه
Stochastic Grammatical Inference of TextDatabase
For a document collection in which structural elements are identiied with markup, it is often necessary to construct a grammar retrospectively that constrains element nesting and ordering. This has been addressed by others as an application of grammatical inference. We describe an approach based on stochastic grammatical inference which scales more naturally to large data sets and produces mode...
متن کاملLearning Stochastic Context-Free Grammars from Corpora Using a Genetic Algorithm
A genetic algorithm for inferring stochastic context-free grammars from nite language samples is described. Solutions to the inference problem are evolved by optimizing the parameters of a covering grammar for a given language sample. We describe a number of experiments in learning grammars for a range of formal languages. The results of these experiments are encouraging and compare very favour...
متن کاملTesting for Stochastic Non- Linearity in the Rational Expectations Permanent Income Hypothesis
The Rational Expectations Permanent Income Hypothesis implies that consumption follows a martingale. However, most empirical tests have rejected the hypothesis. Those empirical tests are based on linear models. If the data generating process is non-linear, conventional tests may not assess some of the randomness properly. As a result, inference based on conventional tests of linear models can b...
متن کاملDecision Making with Uncertain Judgments: A Stochastic Formulation of the Analytic Hierarchy Process
In the Analytic Hierarchy Process (AHP), priorities are derived via a deterministic method, the eigenvalue decomposition. However, judgments may be subject to error. A stochastic characterization of the pairwise comparison judgment task is provided and statistical models are introduced for deriving the underlying priorities. Specifically, a weighted hierarchical multinomial logit model is used ...
متن کاملA study of Grammatical Inference Algorithms in Automatic Music Composition and Musical Style Recognition
A study of the application of Grammatical Inference (GI) in the field of Music is presented. We have studied three GI Algorithms which have been previously applied successfully in other fields. In this work, these algorithms have been used to learn a stochastic grammar for each of three different musical styles from examples of melodies. Then, each of the learned grammars was used to stochastic...
متن کامل